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Abstract

We present two approaches to homogenize bianisotropic particulate composite mediums: (i)
the Incremental Maxwell Garnett (IMG) formalism, in which the composite medium is built
incrementally by adding the inclusions in N discrete steps to the host medium; and (ii)
the Differential Maxwell Garnett (DMG) formalism, which is obtained from the IMG in the
limit N — oo. Both formalisms are applicable to arbitrary inclusion concentration and are
well-suited for computational purposes. Application of both formalisms is exemplified here
by numerical results for a uniaxial dielectric composite medium and a chiroferrite.

1. Introduction

Discrete random mediums — comprising electrically small particles of a certain material dis-
persed randomly in some host medium — have been considered in the electromagnetics liter-
ature for about two centuries as homogeneous material continuums. Several homogenization
formalisms exist to connect the electromagnetic response properties of a homogenized compos-
ite medium (HCM) to those of the constituent material phases; see Ref. [1] for a selection of
milestone papers about this topic.

Perhaps the most widely used homogenization formalism is the Maxwell Garnett (MG)
formalism. It was recently set up for bianisotropic composite mediums containing ellipsoidal in-
clusions [2], [3], covering thereby a large domain of electromagnetic applications in the materials
sciences. One drawback of the MG formalism is that it can be used only for dilute composite
mediums.

Our present work illustrates and enlarges upon an earlier report [4] on overcoming this
handicap of the MG formalism. The so—called Incremental Maxwell Garnett (IMG) formalism is
applicable to dense composite mediums. It has an iterative flavour, being based on the repeated
use of the MG formalism for certain intermediate dilute composite mediums. Furthermore, we
show that the IMG formalism leads to a Differential Maxwell Garnett (DMG) formalism that is
based on the numerical solution of a system of differential equations. Details of the IMG/DMG
formalisms shall be published shortly elsewhere [5]. A more general survey of homogenization
formalisms for bianisotropic composite mediums is given in Ref. [6]; see also Ref. [7].
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2. Theory

Suppose that identical, similarly oriented, electrically small inclusions made of a medium labelled
b are randomly dispersed in a host medium labelled a. The volumetric proportions of the
constituent material phases are denoted by f, and fp, = 1 — f,. Both mediums are linear and
bianisotropic, their frequency~domain constitutive relations being specified as [3], [4]:

(§)=g(ﬁ) (a=2,b). W

The 6x6 constitutive dyadic C® is composed of 3 x 3 dyadics in the following way:

Ea

C*= ( ¢

where ¢* and p® are the permittivity and permeability dyadics, respectively, whereas £* and (®
are the two magnetoelectric dyadics. An exp(—iwt) time-dependence is implicit in this work,

w being the angular frequency.
We define the 6x6 polarizability dyadic

o

a)a (a=a, b), (2)

= v

ga’ina — (ga’ _ga) . [£+iw9__°' . (ga' _ga)] 1 (3)
of an electrically small ellipsoid of medium o/ embedded in medium a, where I is the 6x6
identity dyadic. In the general case of a bianisotropic medium, the 6x6 depolarization dyadic
D% can be computed by numerical two—dimensional integration, and in many important cases
even analytically [6]. _

The MG estimate CM© of the constitutive dyadic of the HCM is given by [2]

. - .y —1
gMG(ga’gb,fb)zga_*_fbgbma, (;—iwfb2a°gbma) , (4)

where D® is related to D* and the functional dependencies of CMC are identified explicitly.

In the IMG formalism, the actual composite medium is built incrementally by adding the
inclusions not all at once, but in IV stages. After each increment, the composite medium is
homogenized using the MG formalism. In this fashion, the following iterative scheme emerges

cO=cs, ct+)) = gMé(c ™, C*, 4), (n=0,1,2,..). (5)
In order to terminate the iterative scheme in N stages, we fix the incremental proportion
Sp=1-(1—fi)/". (6)

As the final result of the iteration, we obtain the IMG estimate C MG — __C_J__(N).
The DMG formalism arises from the IMG formalism in the limit N — oo. The difference
equation (5) is then converted into the ordinary differential equation

__a___ - 1 bingy

with initial value C(0) = C®. The DMG estimate is then given by

CPME = G(f). (8)
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3. Numerical Results and Discussion

Two independent numerical implementations of the IMG and DMG formalisms were set up by
us. Both codes produced identical results in all cases tested. The number of iteration steps for
the IMG formalism is finite, because N is finite, and therefore no convergence problems can arise
so long as an adequately large value of N is used [4]. For implementing the DMG formalism,
one can rely on well-tested algorithms in numerical libraries so that no numerical problems are
to be expected either. Thus, the IMG and DMG implementations are more robust than the
implementation of the Bruggeman (Br) formalism.

We now illustrate the IMG and DMG formalisms in relation to the MG and Br formalisms
and begin with the simple case of a composite medium consisting of a uniaxial dielectric host
medium with spherical isotropic dielectric inclusions. That is,

=6 (L+3uu), €=10al; pP=pl, ==, 9
where €p and yg are the permittivity and permeability of free space, u is a unit vector parallel to
the optical axis of the uniaxial medium, and [ is the 3x3 unit dyadic. The calculated nonzero
components of the permittivity dyadic

gHCM =€ [GHCM I+ (EECM _ 6HCM) u y] , (10)
are plotted as functions of f, in Figure 1; trivially, yH#M = =pol, §HCM CHCM = 0. The order

of the IMG calculations was set to N = 5 to keep the differences with the DMG appremable on
the graphs presented. Both the DMG and IMG estimates are bounded by the MG and the Br
estimates for 0 < f;, < 1.

We now counsider a fully bianisotropic composite medium, viz., a chiroferrite conceptualized
as a random deposition of electrically small, isotropic chiral spheres in a ferrite host. The
constitutive dyadics are denoted as

% =17 [’r"i—i’r“ux£+(r"—r")y_y] , (11)

(r=¢¢& ¢ p; a=a,b, MG, Br, IMG, DMG);

and we chose the following parameter values: €; = € =5, ¢ = 0, £* = Ca =0, uu =p®=1.1,
pg = 1.3 for medium a; and €2 = €® = 4, eg =0, gb —§b Eu = {-‘b =1, §g 0, ub = ub = L5,
ug = 0 for medium b. Estimates of the three nonzero scalar components of the constitutive
dyadics 1M, SHCM and pHCM, are plotted as functions of f, in Figure 2. Results for CHCM
are not dlsplayed since EHCM —¢ HCM follows numerically from all four formalisms.

Clearly, the differences between the predictions of the homogenization formalisms studied

here are relatively small. The simplicity and robustness of the numerical implementation is

then a clear advantage for the Incremental/Differential Maxwell Garnett formalisms over the
Bruggeman formalism.
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Figure 1: Relative permittivity scalars of a uniaxial Figure 2a: Constitutive parameters e ,
dielectric composite as functions of the inclusion €CM HOM of 5 chiroferrite HCM as functions of
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volumetric proportion fi,. the inclusion volumetric proportion f,.
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Figure 2b:  Constitutive parameters ¢H°M, Figure 2c:  Constitutive parameters pHOoM,

u

HOM, ¢HCM of a chiroferrite HCM as functions of ~ uHCM, #g®™ of a chiroferrite HCM as functions of

the inclusion volumetric proportion fi,. the inclusion volumetric proportion f.



